
Chapter 7

Hypothesis testing

Exploring the data from the NSFG, we saw several “apparent effects,” in-
cluding a number of differences between first babies and others. So far we
have taken these effects at face value; in this chapter, finally, we put them to
the test.

The fundamental question we want to address is whether these effects are
real. For example, if we see a difference in the mean pregnancy length for
first babies and others, we want to know whether that difference is real, or
whether it occurred by chance.

That question turns out to be hard to address directly, so we will proceed in
two steps. First we will test whether the effect is significant, then we will
try to interpret the result as an answer to the original question.

In the context of statistics, “significant” has a technical definition that is
different from its use in common language. As defined earlier, an apparent
effect is statistically significant if it is unlikely to have occurred by chance.

To make this more precise, we have to answer three questions:

1. What do we mean by “chance”?

2. What do we mean by “unlikely”?

3. What do we mean by “effect”?

All three of these questions are harder than they look. Nevertheless, there
is a general structure that people use to test statistical significance:
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Null hypothesis: The null hypothesis is a model of the system based on
the assumption that the apparent effect was actually due to chance.

p-value: The p-value is the probability of the apparent effect under the null
hypothesis.

Interpretation: Based on the p-value, we conclude that the effect is either
statistically significant, or not.

This process is called hypothesis testing. The underlying logic is similar to
a proof by contradiction. To prove a mathematical statement, A, you assume
temporarily that A is false. If that assumption leads to a contradiction, you
conclude that A must actually be true.

Similarly, to test a hypothesis like, “This effect is real,” we assume, tem-
porarily, that is is not. That’s the null hypothesis. Based on that assumption,
we compute the probability of the apparent effect. That’s the p-value. If the
p-value is low enough, we conclude that the null hypothesis is unlikely to
be true.

7.1 Testing a difference in means

One of the easiest hypotheses to test is an apparent difference in mean be-
tween two groups. In the NSFG data, we saw that the mean pregnancy
length for first babies is slightly longer, and the mean weight at birth is
slightly smaller. Now we will see if those effects are significant.

For these examples, the null hypothesis is that the distributions for the two
groups are the same, and that the apparent difference is due to chance.

To compute p-values, we find the pooled distribution for all live births (first
babies and others), generate random samples that are the same size as the
observed samples, and compute the difference in means under the null hy-
pothesis.

If we generate a large number of samples, we can count how often the dif-
ference in means (due to chance) is as big or bigger than the difference we
actually observed. This fraction is the p-value.

For pregnancy length, we observed n = 4413 first babies and m = 4735 others,
and the difference in mean was δ = 0.078 weeks. To approximate the p-value
of this effect, I pooled the distributions, generated samples with sizes n and
m and computed the difference in mean.
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Figure 7.1: CDF of difference in mean for resampled data.

This is another example of resampling, because we are drawing a random
sample from a dataset that is, itself, a sample of the general population. I
computed differences for 1000 sample pairs; Figure 7.1 shows their distri-
bution.

The mean difference is near 0, as you would expect with samples from the
same distribution. The vertical lines show the cutoffs where x =−δ or x = δ.

Of 1000 sample pairs, there were 166 where the difference in mean (positive
or negative) was as big or bigger than δ, so the p-value is approximately
0.166. In other words, we expect to see an effect as big as δ about 17% of the
time, even if the actual distribution for the two groups is the same.

So the apparent effect is not very likely, but is it unlikely enough? I’ll ad-
dress that in the next section.

Exercise 7.1 In the NSFG dataset, the difference in mean weight for first
births is 2.0 ounces. Compute the p-value of this difference.

Hint: for this kind of resampling it is important to sample with replace-
ment, so you should use random.choice rather than random.sample (see
Section 3.8).

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.
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7.2 Choosing a threshold

In hypothesis testing we have to worry about two kinds of errors.

• A Type I error, also called a false positive, is when we accept a hy-
pothesis that is actually false; that is, we consider an effect significant
when it was actually due to chance.

• A Type II error, also called a false negative, is when we reject a hy-
pothesis that is actually true; that is, we attribute an effect to chance
when it was actually real.

The most common approach to hypothesis testing is to choose a threshold1,
α, for the p-value and to accept as significant any effect with a p-value less
than α. A common choice for α is 5%. By this criterion, the apparent differ-
ence in pregnancy length for first babies is not significant, but the difference
in weight is.

For this kind of hypothesis testing, we can compute the probability of a false
positive explicitly: it turns out to be α.

To see why, think about the definition of false positive—the chance of ac-
cepting a hypothesis that is false—and the definition of a p-value—the
chance of generating the measured effect if the hypothesis is false.

Putting these together, we can ask: if the hypothesis is false, what is the
chance of generating a measured effect that will be considered significant
with threshold α? The answer is α.

We can decrease the chance of a false positive by decreasing the threshold.
For example, if the threshold is 1%, there is only a 1% chance of a false
positive.

But there is a price to pay: decreasing the threshold raises the standard of
evidence, which increases the chance of rejecting a valid hypothesis.

In general there is a tradeoff between Type I and Type II errors. The only
way to decrease both at the same time is to increase the sample size (or, in
some cases, decrease measurement error).

Exercise 7.2 To investigate the effect of sample size on p-value, see what
happens if you discard half of the data from the NSFG. Hint: use
random.sample. What if you discard three-quarters of the data, and so on?

1Also known as a “Significance criterion.”
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What is the smallest sample size where the difference in mean birth weight
is still significant with α = 5%? How much larger does the sample size have
to be with α = 1%?

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.

7.3 Defining the effect
When something unusual happens, people often say something like, “Wow!
What were the chances of that?” This question makes sense because we
have an intuitive sense that some things are more likely than others. But
this intuition doesn’t always hold up to scrutiny.

For example, suppose I toss a coin 10 times, and after each toss I write down
H for heads and T for tails. If the result was a sequence like THHTHTTTHH,
you wouldn’t be too surprised. But if the result was HHHHHHHHHH, you
would say something like, “Wow! What were the chances of that?”

But in this example, the probability of the two sequences is the same: one in
1024. And the same is true for any other sequence. So when we ask, “What
were the chances of that,” we have to be careful about what we mean by
“that.”

For the NSFG data, I defined the effect as “a difference in mean (positive
or negative) as big or bigger than δ.” By making this choice, I decided to
evaluate the magnitude of the difference, ignoring the sign.

A test like that is called two-sided, because we consider both sides (positive
and negative) in the distribution from Figure 7.1. By using a two-sided test
we are testing the hypothesis that there is a significant difference between
the distributions, without specifying the sign of the difference.

The alternative is to use a one-sided test, which asks whether the mean
for first babies is significantly higher than the mean for others. Because the
hypothesis is more specific, the p-value is lower—in this case it is roughly
half.

7.4 Interpreting the result
At the beginning of this chapter I said that the question we want to address
is whether an apparent effect is real. We started by defining the null hypoth-
esis, denoted H0, which is the hypothesis that the effect is not real. Then we
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defined the p-value, which is P(E|H0), where E is an effect as big as or big-
ger than the apparent effect. Then we computed p-values and compared
them to a threshold, α.

That’s a useful step, but it doesn’t answer the original question, which is
whether the effect is real. There are several ways to interpret the result of a
hypothesis test:

Classical: In classical hypothesis testing, if a p-value is less than α, you can
say that the effect is statistically significant, but you can’t conclude
that it’s real. This formulation is careful to avoid leaping to conclu-
sions, but it is deeply unsatisfying.

Practical: In practice, people are not so formal. In most science journals, re-
searchers report p-values without apology, and readers interpret them
as evidence that the apparent effect is real. The lower the p-value, the
higher their confidence in this conclusion.

Bayesian: What we really want to know is P(HA|E), where HA is the hy-
pothesis that the effect is real. By Bayes’s theorem

P(HA | E) =
P(E | HA) P(HA)

P(E)

where P(HA) is the prior probability of HA before we saw the effect,
P(E|HA) is the probability of seeing E, assuming that the effect is real,
and P(E) is the probability of seeing E under any hypothesis. Since the
effect is either real or it’s not,

P(E) = P(E|HA) P(HA) + P(E|H0) P(H0)

As an example, I’ll compute P(HA|E) for pregnancy lengths in the NSFG.
We have already computed P(E|H0) = 0.166, so all we have to do is compute
P(E|HA) and choose a value for the prior.

To compute P(E|HA), we assume that the effect is real—that is, that the
difference in mean duration, δ, is actually what we observed, 0.078. (This
way of formulating HA is a little bit bogus. I will explain and fix the problem
in the next section.)

By generating 1000 sample pairs, one from each distribution, I estimated
P(E|HA) = 0.494. With the prior P(HA) = 0.5, the posterior probability of
HA is 0.748.

So if the prior probability of HA is 50%, the updated probability, taking into
account the evidence from this dataset, is almost 75%. It makes sense that
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the posterior is higher, since the data provide some support for the hypoth-
esis. But it might seem surprising that the difference is so large, especially
since we found that the difference in means was not statistically significant.

In fact, the method I used in this section is not quite right, and it tends to
overstate the impact of the evidence. In the next section we will correct this
tendency.

Exercise 7.3 Using the data from the NSFG, what is the posterior probability
that the distribution of birth weights is different for first babies and others?

You can start with the code I used to generate the results in this section,
which you can download from http://thinkstats.com/hypothesis.py.

7.5 Cross-validation

In the previous example, we used the dataset to formulate the hypothesis
HA, and then we used the same dataset to test it. That’s not a good idea; it
is too easy to generate misleading results.

The problem is that even when the null hypothesis is true, there is likely to
be some difference, δ, between any two groups, just by chance. If we use
the observed value of δ to formulate the hypothesis, P(HA|E) is likely to be
high even when HA is false.

We can address this problem with cross-validation, which uses one dataset
to compute δ and a different dataset to evaluate HA. The first dataset is called
the training set; the second is called the testing set.

In a study like the NSFG, which studies a different cohort in each cycle, we
can use one cycle for training and another for testing. Or we can partition
the data into subsets (at random), then use one for training and one for
testing.

I implemented the second approach, dividing the Cycle 6 data roughly in
half. I ran the test several times with different random partitions. The aver-
age posterior probability was P(HA|E) = 0.621. As expected, the impact of
the evidence is smaller, partly because of the smaller sample size in the test
set, and also because we are no longer using the same data for training and
testing.
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7.6 Reporting Bayesian probabilities

In the previous section we chose the prior probability P(HA) = 0.5. If we
have a set of hypotheses and no reason to think one is more likely than
another, it is common to assign each the same probability.

Some people object to Bayesian probabilities because they depend on prior
probabilities, and people might not agree on the right priors. For people
who expect scientific results to be objective and universal, this property is
deeply unsettling.

One response to this objection is that, in practice, strong evidence tends to
swamp the effect of the prior, so people who start with different priors will
converge toward the same posterior probability.

Another option is to report just the likelihood ratio, P(E | HA) / P(E|H0),
rather than the posterior probability. That way readers can plug in whatever
prior they like and compute their own posteriors (no pun intended). The
likelihood ratio is sometimes called a Bayes factor (see http://wikipedia.

org/wiki/Bayes_factor).

Exercise 7.4 If your prior probability for a hypothesis, HA, is 0.3 and new
evidence becomes available that yields a likelihood ratio of 3 relative to the
null hypothesis, H0, what is your posterior probability for HA?

Exercise 7.5 This exercise is adapted from MacKay, Information Theory, Infer-
ence, and Learning Algorithms:

Two people have left traces of their own blood at the scene of
a crime. A suspect, Oliver, is tested and found to have type
O blood. The blood groups of the two traces are found to be
of type O (a common type in the local population, having fre-
quency 60%) and of type AB (a rare type, with frequency 1%).
Do these data (the blood types found at the scene) give evidence
in favor of the proposition that Oliver was one of the two people
whose blood was found at the scene?

Hint: Compute the likelihood ratio for this evidence; if it is greater than 1,
then the evidence is in favor of the proposition. For a solution and discus-
sion, see page 55 of MacKay’s book.
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7.7 Chi-square test

In Section 7.2 we concluded that the apparent difference in mean pregnancy
length for first babies and others was not significant. But in Section 2.10,
when we computed relative risk, we saw that first babies are more likely to
be early, less likely to be on time, and more likely to be late.

So maybe the distributions have the same mean and different variance. We
could test the significance of the difference in variance, but variances are less
robust than means, and hypothesis tests for variance often behave badly.

An alternative is to test a hypothesis that more directly reflects the effect as
it appears; that is, the hypothesis that first babies are more likely to be early,
less likely to be on time, and more likely to be late.

We proceed in five easy steps:

1. We define a set of categories, called cells, that each baby might fall
into. In this example, there are six cells because there are two groups
(first babies and others) and three bins (early, on time or late).

I’ll use the definitions from Section 2.10: a baby is early if it is born
during Week 37 or earlier, on time if it is born during Week 38, 39 or
40, and late if it is born during Week 41 or later.

2. We compute the number of babies we expect in each cell. Under the
null hypothesis, we assume that the distributions are the same for the
two groups, so we can compute the pooled probabilities: P(early),
P(ontime) and P(late).

For first babies, we have n = 4413 samples, so under the null hypoth-
esis we expect n P(early) first babies to be early, n P(ontime) to be
on time, etc. Likewise, we have m = 4735 other babies, so we expect
m P(early) other babies to be early, etc.

3. For each cell we compute the deviation; that is, the difference between
the observed value, Oi, and the expected value, Ei.

4. We compute some measure of the total deviation; this quantity is
called the test statistic. The most common choice is the chi-square
statistic:

χ2 = ∑
i

(Oi − Ei)
2

Ei



88 Chapter 7. Hypothesis testing

5. We can use a Monte Carlo simulation to compute the p-value, which is
the probability of seeing a chi-square statistic as high as the observed
value under the null hypothesis.

When the chi-square statistic is used, this process is called a chi-square test.
One feature of the chi-square test is that the distribution of the test statistic
can be computed analytically.

Using the data from the NSFG I computed χ2 = 91.64, which would occur
by chance about one time in 10,000. I conclude that this result is statisti-
cally significant, with one caution: again we used the same dataset for ex-
ploration and testing. It would be a good idea to confirm this result with
another dataset.

You can download the code I used in this section from http://thinkstats.

com/chi.py.

Exercise 7.6 Suppose you run a casino and you suspect that a customer has
replaced a die provided by the casino with a “crooked die;” that is, one that
has been tampered with to make one of the faces more likely to come up
than the others. You apprehend the alleged cheater and confiscate the die,
but now you have to prove that it is crooked.

You roll the die 60 times and get the following results:

Value 1 2 3 4 5 6
Frequency 8 9 19 6 8 10

What is the chi-squared statistic for these values? What is the probability of
seeing a chi-squared value as large by chance?

7.8 Efficient resampling

Anyone reading this book who has prior training in statistics probably
laughed when they saw Figure 7.1, because I used a lot of computer power
to simulate something I could have figured out analytically.

Obviously mathematical analysis is not the focus of this book. I am willing
to use computers to do things the “dumb” way, because I think it is eas-
ier for beginners to understand simulations, and easier to demonstrate that
they are correct. So as long as the simulations don’t take too long to run, I
don’t feel guilty for skipping the analysis.
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However, there are times when a little analysis can save a lot of computing,
and Figure 7.1 is one of those times.

Remember that we were testing the observed difference in the mean be-
tween pregnancy lengths for n = 4413 first babies and m = 4735 others. We
formed the pooled distribution for all babies, drew samples with sizes n and
m, and computed the difference in sample means.

Instead, we could directly compute the distribution of the difference in sam-
ple means. To get started, let’s think about what a sample mean is: we draw
n samples from a distribution, add them up, and divide by n. If the distri-
bution has mean µ and variance σ2, then by the Central Limit Theorem, we
know that the sum of the samples is N (nµ, nσ2).

To figure out the distribution of the sample means, we have to invoke one
of the properties of the normal distribution: if X is N (µ, σ2),

aX + b ∼ N (aµ + b, a2 σ2)

When we divide by n, a = 1/nand b = 0, so

X/n ∼ N (µ/n, σ2/ n2)

So the distribution of the sample mean is N (µ, σ2/n).

To get the distribution of the difference between two sample means, we
invoke another property of the normal distribution: if X1 is N (µ1, σ1

2) and
X2 is N (µ2, σ2

2),

aX1 + bX2 ∼ N (aµ1 + bµ2, a2σ2
1 + b2σ2

2 )

So as a special case:

X1 − X2 ∼ N (µ1 − µ2, σ2
1 + σ2

2 )

Putting it all together, we conclude that the sample in Figure 7.1 is drawn
from N (0, f σ2), where f = 1/n + 1/m. Plugging in n = 4413 and m = 4735,
we expect the difference of sample means to be N (0, 0.0032).

We can use erf.NormalCdf to compute the p-value of the observed differ-
ence in the means:

delta = 0.078

sigma = math.sqrt(0.0032)

left = erf.NormalCdf(-delta, 0.0, sigma)

right = 1 - erf.NormalCdf(delta, 0.0, sigma)
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The sum of the left and right tails is the p-value, 0.168, which is pretty close
to what we estimated by resampling, 0.166. You can download the code I
used in this section from http://thinkstats.com/hypothesis_analytic.

py

7.9 Power

When the result of a hypothesis test is negative (that is, the effect is not
statistically significant), can we conclude that the effect is not real? That
depends on the power of the test.

Statistical power is the probability that the test will be positive if the null
hypothesis is false. In general, the power of a test depends on the sample
size, the magnitude of the effect, and the threshold α.

Exercise 7.7 What is the power of the test in Section 7.2, using α = 0.05 and
assuming that the actual difference between the means is 0.078 weeks?

You can estimate power by generating random samples from distributions
with the given difference in the mean, testing the observed difference in the
mean, and counting the number of positive tests.

What is the power of the test with α = 0.10?

One way to report the power of a test, along with a negative result, is to
say something like, “If the apparent effect were as large as x, this test would
reject the null hypothesis with probability p.”

7.10 Glossary
significant: An effect is statistically significant if it is unlikely to occur by

chance.

null hypothesis: A model of a system based on the assumption that an ap-
parent effect is due to chance.

p-value: The probability that an effect could occur by chance.

hypothesis testing: The process of determining whether an apparent effect
is statistically significant.

false positive: The conclusion that an effect is real when it is not.
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false negative: The conclusion that an effect is due to chance when it is not.

two-sided test: A test that asks, “What is the chance of an effect as big as
the observed effect, positive or negative?”

one-sided test: A test that asks, “What is the chance of an effect as big as
the observed effect, and with the same sign?”

cross-validation: A process of hypothesis testing that uses one dataset for
exploratory data analysis and another dataset for testing.

training set: A dataset used to formulate a hypothesis for testing.

testing set: A dataset used for testing.

test statistic: A statistic used to measure the deviation of an apparent effect
from what is expected by chance.

chi-square test: A test that uses the chi-square statistic as the test statistic.

likelihood ratio: The ratio of P(E|A) to P(E|B) for two hypotheses A and
B, which is a way to report results from a Bayesian analysis without
depending on priors.

cell: In a chi-square test, the categories the observations are divided into.

power: The probability that a test will reject the null hypothesis if it is false.


